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ABSTRACT 
 
The quantitative evaluation of quenchants cooling 
power is indispensable for the computer simulation of 
steel hardening processes. The heat transfer 
coefficient (HTC) or heat flux is used as boundary 
condition to simulate the cooling process during 
quenching. The HTC can be estimated by Inverse 
Heat Conduction Problem (IHCP) software using the 
most important input data, the measured cooling 
curves. The calculated heat transfer coefficient 
substantially depends on the noisiness of the 
measured cooling curves. In this paper the 
performance of different data filtering techniques has 
been studied. Comparative analysis of smoothing 
methods has been demonstrated by using HTC 
calculations that are based on the cooling curves 
filtered by various techniques. Suggestions have been 
made for better filtering and smoothing of noisy data. 
 

Introduction 
 
The cooling power of a quenchant is generally 
characterized by the heat transfer coefficient (HTC) 
between the metal surface and the quenchant, that 
strongly depends on the surface temperature of the 
piece. HTC is used as boundary condition to simulate 
the heat treating process of steels by computational 
techniques, solving the heat conduction equation 
coupled with phase transformation of the material (1) . 
 
Typically, HTC are derived from experimental 
temperature – time data measured by thermocouples 
(cooling curves) placed within some standardized 
probes (2), and solving the heat conduction problem 
coupled with the microstructural changes. The 
mathematical procedure of obtaining HTC as a 
function of temperature, from cooling curves for a 
given material and geometry, is an ill-posed 
numerical problem of great complexity (3). The 
numerical difficulties of this problem are strongly 
increased by statistical errors in the measured cooling 
curves (“noise”), which mainly affect the resulting 
HTC. By this reason, application of noise filtering 
techniques to measured cooling curves after the data 

acquisition process is of great importance for that 
purpose. 
 
Several smoothing algorithms are available in the 
literature. Between them, the moving-average 
technique and the algorithm of Savitzky – Golay (4) 
are well known and are frequently used for this 
purpose. Recently, a computational method based on 
the classical Fourier analysis for filtering end 
encoding of measured or computed quench data, has 
been presented by Felde et al (5). This numerical 
technique was designed primarily to generate 
smoothed cooling curves, temperature rate curves and 
HTC functions. The performance and the accuracy of 
the method was demonstrated in ref. 5, on examples 
with superimposed noise that was produced by a 
random number generator. 
 
An application of this smoothing technique to real 
cooling curve analysis is now described in this paper, 
obtaining temperature dependent HTC of the different 
quenchants by means of the INC-PHATRAN Code (6-

8). The results without smoothing were previously 
presented in ref. 9. Cooling curves measured by 
thermocouples at the center of Stainless Steel 304 
cylindrical probes of 1” diameter and 2” long, 
quenched in helium gas and also in oil, was used for 
the comparative analysis. The Fourier technique with 
several different quantity of coefficients, and also the 
Savitzky – Golay method, has been applied to the 
original cooling curves. Good enhancements of the 
HTC resulting from these curves are demonstrated at 
follows. 
 
Brief description of the filtering 
technique. 
 
 
The formal mathematical background of the method 
was described in ref. 5 and is briefly summarized 
here. It is based on the following considerations: Let 
us assume that the finite set of the so-called noisy 
data which are obtained by measurement or 
computation is represented by data pairs of real 
numbers (ti, yi) for i = 0,1,2,…,2N, where 2N stands 



by the number of data pairs. In practice, value of N 
ranges from 100 to 10000. Data pairs (ti, yi) are 
considered as samples values of a continuous “noisy” 
function YA = YA(t) which is defined in the interval [ts, 
tf], and for which yi = YA(ti) is fulfilled for any ti  = t0 + 
i (tf -  ts)/2N, where i = 0, 1, 2,…, 2N, and t0 = ts, y0 = 
ys and t2N = tf , y2N = yf are fulfilled, respectively (See 
Fig.1). 
 
In order to eliminate or reduce the noise and to obtain 
smoothed data pairs, digital filters of various type can 
be applied. As it is known, a digital filters is 
designated to remove those components of the signal, 
called noise, which are unrelated to the measured or 
computed magnitude (4).  
 

 
Figure 1. Principle of the computational method 
based on Fourier analysis 
 
In order to apply the Fourier analysis to filtering 
purposes, a periodical function YP(t) should be 
constructed from YA(t) as follows: 
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In ref. 5 is demonstrated that YA (t) may be 
approximated by a truncated Fourier series: 
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for   i = 0, 1, 2,…2N and k = 0, 1, 2,…, M,   
 
and  fs ttt ≤≤ . 
 
In Equation (5) integer M is the maximum number of 
Fourier coefficient pairs used for approximation. 
Function YF,M(t) can be used directly for calculating 
the “smoothed value” of yi for any ti  on the whole 
interval ts ≤ ti ≤ tf.. 
 
It is important to note that the value of M should be 
selected carefully, as a result of compromises. It is 
obvious, that if M is decreased, this implies that the 
accuracy of approximation will decrease 
simultaneously, on the other hand, increasing of M 
leads to the decrease in the efficiency of noise 
reduction. It the following it will be shown that the 
optimum value of M, which ensure the fulfillment of 
both requirements, ranges from 8 to 16. 
 
 
The INC-PHATRAN Code 
 
INC-PHATRAN (INverse Conduction coupled with 
PHAse TRANsformation) (6-8)  is a program that may 
be applied to simulate a great variety of heat 
treatment processes, in planar geometry as well as in 
axysimmetrical ones, by means of a finite element 
approach. The corresponding heat transfer 
coefficients can be calculated with its help, if cooling 
curves taken from different locations of the heat 
treated component are provided. The model is based 
on a numerical optimization algorithm which 
includes a module responsible for the calculation on 
time and space the temperature distribution and its 
coupled microstructure evolution. The 
transformation from austenite to ferrite, perlite and 
martensite is governed by the appropriate TTT curve 
and also by the Avrami's approximation. The 
temperature variation, as measured by means of 
thermocouples at different positions in the 
component, are used as input for the program. The 
program calculates the time variation of the heat 
transfer coefficients, together with the temperature 
and distribution of phases, and their variation in time 
throughout the component.  

 



Experimental procedure 
 
Stainless Steel 304 cylindrical probes of 1” diameter 
and 2” long (see figure 1) were used to measure the 
cooling curves. They were quenched in helium gas 
with 5 different concentrations and a temperature of 
28 ºC, and also in oil at 28, 30, 33 and 36 ºC. 
Thermocouples were inserted in the center of each 
sample. A specially prepared testing apparatus was 
used to control the temperature.  

The thermocouples were connected to a computer 
to carry out the data acquisition process, with a 
known frequency. These curves were then kept in 
numerical files which were afterwards used to feed 
INC-PHATRAN. Figures 2 and 3 show the measured 
cooling curves for both quenchants respectively. 
Model INC-PHATRAN were used to calculate the 
temperature dependent heat transfer coefficient 
corresponding to the 8 cooling curves showed in 
figures 2 and 3. Values of the thermal conductivity 
and the specific heat as depending of temperature, 
and of the density, are indicated in table 1. 
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Figure 1. Schematic of 1” diameter 2” long stainless 
steel probe. 

 
 

Temperature dependent 
thermal conductivity 

Temperature dependent 
Specific Heat 

Density 

Temperature [ºC] Conductivity 
[w/m2K] 

Temperature [ºC] Specific heat 
[J/kg.K] 

[kg/m3] 

100. 16.3 38. 527. 7650. 
204. 17.1 93. 549.  
427. 21.1 204. 567.  
500. 21.5 316. 586.  
649. 24.7 371. 601.  

 
Table 1: Thermophysical constant of the material considered in the modeling. 

 
 

 1” diameter probes quenched in Helium 1” diameter probes quenched in oil 
 2.5x, 28 °C 3.0x, 28 °C 3.5x, 28 °C 4.0x, 28 °C 4.5x, 28 °C Oil, Ag 28 Oil, Ag 30 Oil, Ag 33 Oil, Ag 36

  Original 6.90 0.18 1.73 0.75 1.14 2.31 2.22 0.75 0.32 
nR=5 8.28 0.19 1.90 1.19 1.34 1.96 1.87 0.91 0.36 
nR=115 7.00 0.18 1.82 0.93 1.06 2.09 1.32 0.94 0.35 
nR=15 6.69 0.16 1.96 0.93 0.95 1.41 1.23 0.89 0.27 
nR=17 6.41 0.22        
nR=21 8.71 0.24 1.84 0.74 1.33 0.41 1.24 1.14 0.26 

 

nR=25 5.84 1.84 2.63 0.85 1.34 0.21 0.93 0.74 0.20 
M=20 6.25 1.83 2.23 0.94 1.16 1.08 3.08 2.49 1.30 
M=30 13.91 1.09 1.72 0.64 0.97 1.95 1.80 2.57 0.76 
M=40 6.15 1.88 2.56 0.58 1.02 1.46 2.31 2.58 0.60 

 

M=50 11.33 1.83 2.23 0.94 1.16 1.08 3.08 2.49 1.30 
 

Table 2: Mean quadratic difference between measured (and then smoothed) and calculated temperatures. 
 



 
 

Figure 2. Cooling curves measured for 1” diameter probes of stainless steel 304 in helium. 
 
 

 
Figure 3. Cooling curves measured for 1” diameter probes of stainless steel 304 in oil at different temperatures. 



 
Figura 4: Heat transfer coefficient calculated for the probe 2.5x, 28°C, using the original cooling curves and the 
resultant ones of smoothing by the Savitzky–Golay algorithm (with w = 25) and the Fourier technique (with M = 2). 

 

 Figura 5: Heat transfer coefficient calculated for the probe 3.0x, 28°C, using the original cooling curves and the 
resultant ones of smoothing by the Savitzky–Golay algorithm (with w = 25) and the Fourier technique (with M = 2).
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 Figura 6.- Heat transfer coefficient calculated for the probe 3.5x, 28°C, using the original cooling curves and the 
resultant ones of smoothing by the Savitzky–Golay algorithm (with w = 25) and the Fourier technique (with M = 2) 

 
 
Figura 7.- Heat transfer coefficient calculated for the probe 4.0x, 28°C, using the original cooling curves and the 
resultant ones of smoothing by the Savitzky–Golay algorithm (with w = 25) and the Fourier technique (with M = 30) 
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Results of the simulations and conclusions 
 
INC-PHATRAN Code was used to calculate the 
temperature dependent heat transfer coefficient 
corresponding to the 9 heat treated probes whose 
cooling curves are shown in figures 2 and 3. Values 
of the thermal conductivity and the specific heat as 
depending of the temperature, and of the density, 
assumed for the probe material (Stainless Steel 304) 
are indicated in Table 1. The smoothing Fourier 
technique with M = 20, 30, 40 and 50 was applied to 
each one of the cooling curves, and the corresponding 
HTC was also calculated by INC-PHATRAN. For 
comparison, the Savitzky – Golay algorithm with nR = 
5, 11, 15, 17, 21 and 25 was also applied to all the 
cooling curves, and the same analysis with INC-
PHATRAN are also performed. 
 
Table 2 shows the mean quadratic difference between 
the time-dependent temperature measured by the 
thermocouples (or the smoothed curves), and the 
temperature at the place of the thermocouple obtained 
by simulation with INC-PHATRAN after the 
optimization of the heat transfer coefficients was 
performed, for each one of the cases analyzed. 
 
Some comparisons of the heat transfer coefficients 
obtained using the original cooling curves and the 
smoothed ones by the Fourier technique are shown in 
figures 4 to 7. The results obtained after smoothing 
cooling curves with the Savitzky – Golay algorithm 
are also included in the graphs. Great enhancements 
of the oscillations in the HTC typically produced by 
noise in the cooling curves, are evidently achieved 
with the use of the Fourier smoothing technique. 
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